Losartan Inhibits Nuclear Factor-κB Activation Induced by Small, Dense LDL Cholesterol Particles in Human Umbilical Vein Endothelial Cells☆

نویسندگان

  • Gonghui Guo
  • Xiaojing Cheng
  • Rong Fu
چکیده

OBJECTIVE We aimed to investigate how losartan exerts protective effects on human umbilical vein endothelial cell injury induced by small, dense, LDL (sLDL) cholesterol particles. METHODS sLDL cholesterol was isolated by a 2-steps method and the nuclear translocation and activation of nuclear factor-κB (NF-κB) in endothelial cells was observed by confocal microscopy and electrophoretic mobility shift assays. RESULTS Losartan greatly inhibited the nuclear translocation of NF-κB induced by sLDL cholesterol in a dose-dependent manner. CONCLUSIONS sLDL cholesterol may be involved in endothelial dysfunction possibly through NF-κB activation; losartan protects against sLDL cholesterol-inducing endothelial cell injury by inhibiting NF-κB activation, suggesting that losartan may play a role in the prevention and treatment of cardiovascular disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

Hyperglycemia- Induced NF-κB Activation Increases microRNA-146a Expression in Human Umbilical Vein Endothelial Cells

Background & objectives: Nuclear Factor kappa B (NF-κB), a master switch transcription factor, plays a critical role in the progression and development of hyperglycemia-induced microangiopathy. Hyperglycemia activates NF-κB, and subsequently increases pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β leading to development of inflammation. Some new studies have revealed the involvement o...

متن کامل

Inhibition of the NF-κB pathway by R65 ribozyme gene via adeno-associated virus serotype 9 ameliorated oxidized LDL induced human umbilical vein endothelial cell injury.

OBJECTIVE NF-κB signaling plays a central role in the regulation of inflammatory responses in atherosclerosis. R65 ribozyme gene suppresses activation of NF-κB pathway, therefore we studied whether R65 gene therapy can ameliorate oxidized low-density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) injury. METHODS AND RESULTS Recombinant adeno-associated virus sero...

متن کامل

Zc3h12c inhibits vascular inflammation by repressing NF-κB activation and pro-inflammatory gene expression in endothelial cells.

Endothelial activation characterized by the expression of multiple chemokines and adhesive molecules is a critical initial step of vascular inflammation, which results in recruitment of leucocytes into the sub-endothelial layer of the vascular wall and triggers vascular inflammatory diseases such as atherosclerosis. Although inhibiting endothelial inflammation has already been well recognized a...

متن کامل

Rapamycin Inhibits Oxidized Low Density Lipoprotein Uptake in Human Umbilical Vein Endothelial Cells via mTOR/NF-κB/LOX-1 Pathway.

BACKGROUND Lectin-like oxidized low-density lipoprotein-1 (LOX-1) is the major receptor for oxidized low density lipoprotein (ox-LDL) uptake in human umbilical vein endothelial cells (HUVECs). Previously, we found that rapamycin inhibited ox-LDL accumulation in HUVECs, and this effect was related to its role in increasing the activity of autophagy-lysosome pathway. In this study, we determined ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2014